Počet záznamů: 1  

Unsupervised machine translation

  1. Zobrazit informace o knize na stránce www.obalkyknih.cz

    kniha


     Kvapilíková, Ivana - Autor
    First edition - 175 stran : ilustrace ; 23 cm
    ISBN 978-80-246-6078-3
     strojové překlady  porozumění (lingvistika)
     monografie
    SignaturaC 429.019
    Umístění 81 - Lingvistika. Překlad. Dialekty. Gramatika. Stylistika
    Unsupervised machine translation
    PobočkaKde najdu?InfoSignatura
    Lidická ( volný výběr ) k vypůjčeníC 429.019   

    Title statementUnsupervised machine translation : how machines learn to understand across languages / Ivana Kvapilíková
    Main entry-name Kvapilíková, Ivana (Author)
    Edition statementFirst edition
    PublicationPrague : Charles University, Karolinum Press, 2025
    Phys.des.175 stran : ilustrace ; 23 cm
    ISBN978-80-246-6078-3
    National bibl. num.cnb003683732
    Internal Bibliographies/Indexes NoteObsahuje bibliografii a bibliografické odkazy
    Subj. Headings strojové překlady * porozumění (lingvistika)
    Form, Genre monografie
    Conspect81 - Lingvistika. Jazyky
    UDC 81'322.4 , 81'23 , (048.8)
    CountryČesko
    Languageangličtina
    Ve volném výběru81 - Lingvistika. Překlad. Dialekty. Gramatika. Stylistika
    Document kindBOOKS
    Unsupervised machine translation
    For decades, machine translation between natural languages fundamentally relied on human-translated documents known as parallel texts, which provide direct correspondences between source and target sentences. The notion that translation systems could be trained on non-parallel texts, independently written in different languages, was long considered unrealistic. Fast forward to the era of large language models (LLMs), and we now know that given their sufficient computational resources, LLMs exploit incidental parallelism in their vast training data, i.e., they identify parallel messages across languages and learn to translate without explicit supervision. LLMs have since demonstrated the ability to perform translation tasks with impressive quality, rivaling systems specifically trained for translation. This monograph explores the fascinating journey that led to this point, focusing on the development of unsupervised machine translation. Long before the rise of LLMs, researchers were exploring the idea that translation could be achieved without parallel data. Their efforts centered on motivating models to discover cross-lingual correspondences through various techniques, such as the mapping of word embedding spaces, back-translation, or parallel sentence mining. Although much of the research described in this monograph predates the mainstream adoption of LLMs, the insights gained remain highly relevant. They offer a foundation for understanding how and why LLMs are able to translate. Zdroj anotace: Web obalkyknih.cz
    Načítání…

Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.